ETSI UMTS L1 Expert Group Meeting
 Tdoc SMG2 UMTS-L1 2X99-032

Meeting #10

18th -20th January, 1999

Espoo, Finland

Title : Comparison of different code-embedded interleavers
Source:
Lucent Technologies

Introduction

In this document, we compare five different interleavers, namely the ones proposed by NTT-DoCoMo, Hughes Network Systems (HNS), Nortel, and two interleavers proposed by Lucent Technology. They will be compared, for the sake of simplicity and computer time, on the additive white Gaussian noise channel, using a serially concatenated convolutional code (SCCC) with rate 1/3, based on an outer 2/3 code and an inner ½ code, both with 4 states. The information block size is N=320, which corresponds to an interleaver size of 483 (320x3/2+3) including termination of the outer trellis.

The description of the NTT-DoCoMo, HNS and Nortel interleavers can be found in the Documents [1-3]. We acknowledge the fact that the interleavers with the required size have been kindly provided by the experts of the proposing companies.

The two interleavers proposed by Lucent Technology are the S-random interleaver and the Row-column (RC) S-random interleaver. They will be described in the following.

The S-random interleaver

This interleaver, proposed for the first time by D. Divsalar [4] in 1995, is a good mixture of randomness and spreading capabilities. The philosophy underlying its generation is the following. At each step, a random integer is generated and compared with the previous N1 accepted numbers. If the present number lies in a region of width 2xN2 around at least one of the previous N1 numbers, it gets rejected. If not, it is accepted. The procedure goes until the end, and, in case the constraints in terms of N1 and N2 are not fulfilled, it starts again using a different initial seed for the random integer generation.

The input parameters are the interleaver size N (called dim in the procedure), the two parameters N1 and N2 defining the spread (esse, enne in the procedure), and the maximum number of attempts for the generation of any integer.

As a hint, we suggest to use the following conditions for the parameters N1 and N2: they should be of the order of sqrt(N/2).

/************start of C program****************/

char spread(int esse,int enne,int tryagain,int dim,int *ilv)

{

 /** **

 SPREAD GENERATOR - first version

*************** parameters ***

esse,enne = any bit in the permutated sequence will be, at least, ‘enne’ positions apart from the ‘esse’ bits preceeding (and following) it in the input sequence;

tryagain = maximun number of repeated trials for choosing any element of the permutation; often equals ‘dim’;

dim = interleaver size

ilv = pointer to the starting position where the permutation vector is to be written.

*/

int i,j,swap,swapped,try;

for(i=0;i<dim;i++) **(ilv+i)=i; /* *initialize interleaver to identity */

for(i=0;i<dim;i++)

 {

 j=-6;try=tryagain; /* initialize counter variables */

 while((j==-6)&&(try>=0))

 {

 /**** choose an unused element (ilv[swap]) to swap with the i-th ****/

 swap=i+1+(int)floor((float)(dim-i-1)*(float)rand()/RAND_MAX);

 if(swap==dim) swap=dim-1; swapped=*(ilv+swap);

 /**** verify if the choice is applicable, according to esse and enne values ****/

 if(i>=esse) j=esse;

 else j=i;

for(;j>0;j--)

 {

 if((abs(*(ilv+i-j)-swapped))<enne)

 {

 j=-5; /* if conditions are not verified exit */

 try--; /* j-loop and try again ... */

 }

 }

 }

if(j!=-6) /* if the choice is correct swap ilv[swap] and ilv[i] */

 {

 j=*(ilv+i);

 *(ilv+i)=swapped;

 *(ilv+swap)=j;

 }

 else /* if you are here the choice was not correct and it was */

 return(0); /* the last chance, so return to caller (FAILURE) */

 }

return(1); /* the interleaver is correct */

}

/*********************** end of C program**************************/

The S-random row-column interleaver

An S-random row-column interleaver of size N is obtained by pruning a basic row-by-column interleaver of size M=RxC, with M(N.

The column permutation and the row permutation are obtained as two S-random permutations PC and PR of size C and R, respectively, generated using the algorithm implemented by the previous C program.

For any address k, with 0 (k((M-1), we compute the permuted address P[k] as follows:

· First, we compute the integers a=int [k/R] (integer quotient) and b = k mod R
· Then, we apply the two permutations PC and PR to compute the column and row addresses c=PC [a] and r=[PR [b] + a]mod R.

· The address follows as P[k] = r * C + c.

· To generate the required interleaver of size N, we prune the output P[k] of the basic interleaver by deleting references to the non-existent addresses P[j] ((N-1).
For the required interleaver sizes of 483, 963, 7683, we use the numbers given in the following table:

Code-embedded Interleaver size N
R
C
M

483
22
22
484

963
31
32
992

7683
88
88
7744

As the table shows, this technique permits the generation of interleavers with any size with very little pruning, thanks to the possibility of using for R and C any integer, without constraints. This situation is more favourable as compared with the interleaver from HNS, which is derived from a basic interleaver whose size is the product of two integers constrained to be powers of 2.

Simulation results

We have compared the 5 interleavers in two ways. First, we have evaluated the free distance of the SCCC based on the different interleavers and their nearest neighbors. The results are reported in the following table.

Code-embedded Interleaver
Free distance / # of paths at free distance /overall input information weight

S-random (Lucent)
28 / 1 / 5

RC S-random (Lucent)
18 /1 / 6

 HNS
24 / 1 / 6

NTT DoCoMo
18 / 2 / 12

Nortel 1
24 / 109 / 652

Nortel 2
22 / 1/ 3

Nortel 3
24 / 111/ 661

As a comment, we see that the largest free distance and the S-random interleaver provides the lowest number of nearest neighbours. The second best is the HNS interleaver. Then come the RC S-random and NTT- DoCoMo. Two of the three interleavers by Nortel are relatively good in terms of free distance, but show a huge number of nearest neighbours. In the simulation results that follow, we have used the interleaver Nortel 1.

As a second way of comparison, we have simulated the performance of the five SCCCs employing the same 4-state codes and the different interleavers over the additive Gaussian noise channel. In Figure 1 we report the obtained simulation results in terms of both bit and frame error probabilities.

[image: image1.wmf]Interleaver comparison SCCC Rate 2/3 punctured-Rate 1/2 (AWGN Channel)

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Eb/N0

BER-FER

S-random

RC S-random

HNS

NTT

Nortel

S-random FER

RC S-random FER

HNS FER

NTT FER

Nortel FER

Figure 1: Comparison of different code-embedded interleavers on SCCC

The simulation results suggest the following conclusions :

· In terms of bit error probability, the best performance is obtained using the S-random interleaver, followed by HNS, NTT and RC S-random interleavers (yielding the same performance). The Nortel interleaver yields the worst performance
.

· In terms of frame error probability, the differences are more significant. The best interleaver is once again the S-random, followed by the HNS, the NTT and the RC S-random interleavers. Last comes the Nortel interleaver.

In terms of implementation complexity, the following should be noted:

· The best interleaver, i.e., the S-random interleaver, requires the largest amount of ROM; namely, for a size N it requires the storing of N integers. This interleaver is not suitable to an “on-the-fly” implementation. On the other hand it is the simplest in terms of arithmetic complexity.

· The HNS, the RC S-random and Nortel interleavers are suitable to an “on-the-fly” implementation, based on a very significant reduction of the required ROM size and on a slight addition to the arithmetic complexity. In particular, in what seems to us the best compromise between memory and arithmetic complexity, the HNS interleaver obtained from a basic interleaver of size [image: image2.wmf]c

r

C

R

M

2

2

+

=

´

=

requires the storing of c(R+C) numbers, whereas the RC S-random row-column interleaver obtained from a basic interleaver of size [image: image3.wmf]C

R

´

requires the storing of R+C numbers. The Nortel interleaver has slightly larger memory requirements. In terms of arithmetic complexity, the RC S-random and the Nortel interleaver are slightly simpler than the GF interleaver.

· As to the NTT interleaver, it also can be implemented “on-the-fly” with a reduced ROM requirement. However, its arithmetic complexity seems significantly higher than that required for the other three interleavers.

Conclusions

We have compared 5 different interleavers embedded into an SCCC encoder acting on a block of 320 information bits. The comparison has considered the free distance of the 5 generated codes, and the simulated performance in terms of bit and error probabilities over the AWGN channel. The best interleaver turned out to be the S-random interleaver, which yields a gain of about 0.1 dB at a bit error probability of 10-6 with respect to the others. On the other hand, the S-random interleaver is not suitable for an “on-the-fly” implementation.

In our opinion, the final choice for the interleaver should consider with great attention the significance of the slight increase in the required memory [5] against the computational simplicity of a solution based on interleavers stored in a ROM, which behave better than the others because of the highest degree of randomness they permit.

References

[1] NTT-DoCoMo UMTS Document dated 23 December 1998.

[2] Hughes Network Systems Tdoc SMG2 UMTS-L1 765/98.

[3] Nortel Tdoc SMG2 UMTS-L1 XXX/98.

[4] D.Divsalar and F.Pollara, “Turbo Codes for PCS Applications,” Proceedings IEEE Int. Conf. on Comm. June 1995.

[5] Lucent Tdoc SMG2 UMTS-L1 2x99-034.

� Actually, we received three interleavers from Nortel, all of them passing their optimality criteria. We used one of those picked by chance.

2

_978009219.xls
B.E.R.

		0		0		0		0		0		0		0		0		0		0

		0.2		0.2		0.2		0.2		0.2		0.2		0.2		0.2		0.2		0.2

		0.4		0.4		0.4		0.4		0.4		0.4		0.4		0.4		0.4		0.4

		0.6		0.6		0.6		0.6		0.6		0.6		0.6		0.6		0.6		0.6

		0.8		0.8		0.8		0.8		0.8		0.8		0.8		0.8		0.8		0.8

		1		1		1		1		1		1		1		1		1		1

		1.2		1.2		1.2		1.2		1.2		1.2		1.2		1.2		1.2		1.2

		1.4		1.4		1.4		1.4		1.4		1.4		1.4		1.4		1.4		1.4

		1.6		1.6		1.6		1.6		1.6		1.6		1.6		1.6		1.6		1.6

		1.8		1.8		1.8		1.8		1.8		1.8		1.8		1.8		1.8		1.8

		2		2		2		2		2		2		2		2		2		2

		2.2		2.2		2.2		2.2		2.2		2.2		2.2		2.2		2.2		2.2

		2.4		2.4		2.4		2.4		2.4		2.4		2.4		2.4		2.4		2.4

												2.6		2.6		2.6		2.6		2.6

S-random

RC S-random

HNS

NTT

Nortel

S-random FER

RC S-random FER

HNS FER

NTT FER

Nortel FER

Eb/N0

BER-FER

Interleaver comparison SCCC Rate 2/3 punctured-Rate 1/2 (AWGN Channel)

0.1362

0.1341

0.1412

0.136

0.1351

0.9119

0.8809

0.9103

0.8943

0.8969

0.1083

0.1032

0.1142

0.1078

0.1037

0.7597

0.7343

0.8135

0.7765

0.7463

0.07854

0.07316

0.08291

0.07092

0.0701

0.6028

0.5823

0.6344

0.5425

0.565

0.045

0.04633

0.04849

0.04304

0.04071

0.3554

0.375

0.4051

0.346

0.3683

0.02228

0.02505

0.02338

0.02342

0.02075

0.1856

0.2045

0.2055

0.1902

0.2068

0.01072

0.01145

0.01028

0.01171

0.01008

0.08654

0.1022

0.08816

0.1025

0.1034

0.004058

0.003964

0.003561

0.003753

0.003524

0.03577

0.03564

0.03233

0.03389

0.04296

0.00131

0.001199

0.001153

0.001266

0.001139

0.01184

0.01158

0.01041

0.01193

0.01481

0.0003386

0.0002816

0.0002995

0.0003074

0.0003948

0.003222

0.003079

0.002903

0.002962

0.005423

0.00005984

0.00007168

0.00006201

0.00007003

0.0001019

0.0006018

0.0008296

0.0006278

0.0007215

0.001774

0.000009444

0.00001447

0.00001267

0.00001312

0.00002829

0.000102

0.0002124

0.00014

0.0001627

0.0005415

0.000001188

0.000002502

0.000002469

0.000002146

0.000008519

0.000017

0.00006333

0.00003

0.00003867

0.0002098

F.E.R.

		0		0		0		0

		0.2		0.2		0.2		0.2

		0.4		0.4		0.4		0.4

		0.6		0.6		0.6		0.6

		0.8		0.8		0.8		0.8

		1		1		1		1

		1.2		1.2		1.2		1.2

		1.4		1.4		1.4		1.4

		1.6		1.6		1.6		1.6

		1.8		1.8		1.8		1.8

		2		2		2		2

		2.2		2.2		2.2		2.2

		2.4		2.4		2.4		2.4

		2.6		2.6		2.6		2.6

23-12 p 100 10it

23-12 p 100 16it

RC Spread 483 (10)

RC Spread 483 (16)

Eb/N0

F.E.R.

Interleaver comparison SCCC Rate 2/3 punctured-Rate 1/2 (AWGN Channel)

0.9119

0.8811

0.8809

0.8511

0.7597

0.7067

0.7343

0.6993

0.6028

0.5634

0.5823

0.5063

0.3554

0.3231

0.375

0.3333

0.1856

0.1621

0.2045

0.181

0.08654

0.07625

0.1022

0.08587

0.03577

0.02862

0.03564

0.0302

0.01184

0.008457

0.01158

0.00884

0.003222

0.00212

0.003079

0.002191

0.0006018

0.0003603

0.0008296

0.0006558

0.000102

0.000056

0.0002124

0.0001697

0.000017

0.000008

0.00006333

0.00005467

Dati BER

				Spread 483 (10)		Spread 483 (16)		RC Spread 483 (10)		RC Spread 483 (16)		HNS (10)		Nortel (10)		NTT		HNS (16)

		0		1.36E-01		1.35E-01		1.34E-01		1.33E-01		1.41E-01		1.35E-01		1.36E-01		1.40E-01

		0.2		1.08E-01		1.06E-01		1.03E-01		1.02E-01		1.14E-01		1.04E-01		1.08E-01		1.13E-01

		0.4		7.85E-02		7.53E-02		7.32E-02		6.98E-02		8.29E-02		7.01E-02		7.09E-02		7.98E-02

		0.6		4.50E-02		4.28E-02		4.63E-02		4.49E-02		4.85E-02		4.07E-02		4.30E-02		4.61E-02

		0.8		2.23E-02		2.09E-02		2.51E-02		2.37E-02		2.34E-02		2.08E-02		2.34E-02		2.16E-02

		1		1.07E-02		9.90E-03		1.15E-02		1.07E-02		1.03E-02		1.01E-02		1.17E-02		9.13E-03

		1.2		4.06E-03		3.64E-03		3.96E-03		3.65E-03		3.56E-03		3.52E-03		3.75E-03		3.25E-03

		1.4		1.31E-03		1.05E-03		1.20E-03		1.03E-03		1.15E-03		1.14E-03		1.27E-03		1.01E-03

		1.6		3.39E-04		2.51E-04		2.82E-04		2.22E-04		3.00E-04		3.95E-04		3.07E-04		2.48E-04

		1.8		5.98E-05		4.07E-05		7.17E-05		5.81E-05		6.20E-05		1.02E-04		7.00E-05		4.98E-05

		2		9.44E-06		6.58E-06		1.45E-05		1.06E-05		1.27E-05		2.83E-05		1.31E-05		9.54E-06

		2.2		1.19E-06		7.31E-07		2.50E-06		2.04E-06		2.47E-06		8.52E-06		2.15E-06		2.00E-06

		2.4

Data FER

				23-12 p 100 10it		23-12 p 100 16it		RC Spread 483 (10)		RC Spread 483 (16)		HNS (10)		Nortel(10)		NTT (10)		HNS (16)

		0		9.12E-01		8.81E-01		8.81E-01		8.51E-01		9.10E-01		8.97E-01		8.94E-01		8.97E-01

		0.2		7.60E-01		7.07E-01		7.34E-01		6.99E-01		8.14E-01		7.46E-01		7.77E-01		7.94E-01

		0.4		6.03E-01		5.63E-01		5.82E-01		5.06E-01		6.34E-01		5.65E-01		5.43E-01		6.04E-01

		0.6		3.55E-01		3.23E-01		3.75E-01		3.33E-01		4.05E-01		3.68E-01		3.46E-01		3.62E-01

		0.8		1.86E-01		1.62E-01		2.05E-01		1.81E-01		2.06E-01		2.07E-01		1.90E-01		1.77E-01

		1		8.65E-02		7.63E-02		1.02E-01		8.59E-02		8.82E-02		1.03E-01		1.03E-01		7.38E-02

		1.2		3.58E-02		2.86E-02		3.56E-02		3.02E-02		3.23E-02		4.30E-02		3.39E-02		2.58E-02

		1.4		1.18E-02		8.46E-03		1.16E-02		8.84E-03		1.04E-02		1.48E-02		1.19E-02		8.07E-03

		1.6		3.22E-03		2.12E-03		3.08E-03		2.19E-03		2.90E-03		5.42E-03		2.96E-03		2.14E-03

		1.8		6.02E-04		3.60E-04		8.30E-04		6.56E-04		6.28E-04		1.77E-03		7.22E-04		4.35E-04

		2		1.02E-04		5.60E-05		2.12E-04		1.70E-04		1.40E-04		5.42E-04		1.63E-04		9.80E-05

		2.2		1.70E-05		8.00E-06		6.33E-05		5.47E-05		3.00E-05		2.10E-04		3.87E-05		2.20E-05

		2.4

		2.6

