ETSI UMTS L1 Expert Group Meeting
 Tdoc SMG2 UMTS-L1 657/98

15th -18th December, 1998

Helsinki, Finland

Title: Analysis of hardware implementation of iterative decoders
Source:
Lucent Technologies

Introduction

In this document, we thoroughly analyse the hardware implementation complexity of the decoder for turbo codes (PCCCs for short, in the following) and for the serially concatenated convolutional codes (in short, SCCCs) whose performance has been described in a companion document [1]. We split the complexity analysis into the memory requirement analysis, and the arithmetic (processing) complexity analysis. We consider the following decoding algorithms:

· Optimum Log-APP (OLA).

· Max-Log-APP (MLA).

For both algorithms, we will consider a general version, called Sliding-Window-Block (SWB), introduced in [2], which consists in working on a sliding window of size Nsw =Nbl +D trellis steps (we talk about “trellis steps”, instead of “bits”, since this make the analysis independent of the code rate. As an example, for a rate k/n code, NSW trellis steps would mean n(NSW coded bits and k(NSW information bits), and in decoding a block of Nbl trellis steps per window all at once.

This a very general setting, as in the limit we can also obtain the particular case of a single-shot decoding (called “fixed window” in Nortel contribution, Tdoc 585/98). Moreover, since we consider fixed-point implementations, we will also introduce the parameter number of bits in the quantised soft sample from demodulator, denoted by q, and the number of bits for the quantisation of the log-likelihood ratios involved in the iterative algorithm, denoted by qx .

For the sake of clarity, we summarize in the following table the parameters that will be used for the evaluation of both memory and complexity requirements for PCCC and SCCC.

Table 1: Main parameter for the evaluations of the memory and complexity requirements for PCCC and SCCC

Parameter
Symbol

Information frame length

[image: image1.wmf]N

 EMBED Equation.3 [image: image2.wmf]

Trellis steps for grouped decision

[image: image3.wmf]bl

N

Trellis steps for initialization

[image: image4.wmf]D

Number of iterations

[image: image5.wmf]it

N

Number of states - inner encoder

[image: image6.wmf]si

N

Number of states – outer encoder

[image: image7.wmf]so

N

Input bits - inner encoder

[image: image8.wmf]i

k

Output bits - inner encoder

[image: image9.wmf]i

n

Termination steps - inner encoder

[image: image10.wmf]ti

n

Input bits - outer encoder

[image: image11.wmf]o

k

Output bits - outer encoder

[image: image12.wmf]o

n

Termination steps - outer encoder

[image: image13.wmf]to

n

Number of states of both encoders for PCCC

[image: image14.wmf]s

N

Termination steps for both encoders - PCCC

[image: image15.wmf]t

n

Input information bits

[image: image16.wmf]k

Output bits - upper encoder

[image: image17.wmf]1

n

Output bits – lower encoder

[image: image18.wmf]2

n

Quantization bits – soft demod.
 q

Quantization bits - LLRs
 qx

The memory requirements analysis

In the following, we analyze the memory requirements for PCCC and SCCC. We will not distinguish between Opt-Log-APP and Max-Log-APP, because, in terms of memory requirements, they coincide.

Memory Requirements for PCCC

· An input buffer containing the log-likelihood ratios (LLRs) coming from the soft demodulator with size equal to the turbo codeword :

[image: image19.wmf](

)

]

bit

[

2

1

q

n

n

n

k

N

L

t

i

+

÷

ø

ö

ç

è

æ

+

=

.

· A double reading/writing buffer for the storage of the extrinsic LLRs that are involved in the iterative decoding process with size equal to the interleaver length. Two buffers are necessary for the most straightforward (non optimised) implementation of the interleaving- deinterleaving operations :

[image: image20.wmf]]

bit

[

2

x

x

Nq

L

=

.

· A temporary memory buffer for storing the backward path metrics (in the Log-APP SWB algorithm, with size :

[image: image21.wmf](

)

]

bit

[

x

bl

s

q

D

N

N

L

+

=

b

.

· A read-only memory to store the address of the permutation, with size :

[image: image22.wmf](

)

]

[bit

log

2

N

N

L

=

p

.

The total number of bits to store is then :

[image: image23.wmf]p

b

L

L

L

L

L

x

i

tot

+

+

+

=

 .

Memory Requirements for SCCC

· An input buffer to store the LLRs coming from the demodulator with size equal to the SCCC codeword :

[image: image24.wmf]]

bit

[

q

n

n

k

n

n

k

N

L

i

ti

i

o

to

o

i

÷

÷

ø

ö

ç

ç

è

æ

+

÷

ø

ö

ç

è

æ

+

=

.

· A double reading/writing buffer for the storage of the extrinsic LLRs that are involved in the iterative decoding process with size equal to the interleaver length. Two buffers are necessary for the most straightforward (non optimised) implementation of the interleaving-deinterleaving :

[image: image25.wmf]]

bit

[

2

x

o

to

o

x

q

n

n

k

N

L

÷

÷

ø

ö

ç

ç

è

æ

+

=

.

· A temporary memory buffer for storing the backward path metrics (in the Log-APP SWB algorithm, with size :

[image: image26.wmf](

)

(

)

]

bit

[

,

max

x

bl

so

si

q

D

N

N

N

L

+

×

=

b

.

· A read-only memory to store the address of the permutation. Its length should be

[image: image27.wmf]]

[bit

2

log

2

2

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

+

=

o

to

o

o

to

o

n

n

k

N

n

n

k

N

L

p

.

The total number of bits to store is then :

[image: image28.wmf]p

b

L

L

L

L

L

x

i

tot

+

+

+

=

.

As it appears clearly from the previous equations, the memory requirements decrease when decreasing the sliding window size, and thus, from this respect, it would seem reasonable to work with a small value of it. However, we will see in the following sections that the arithmetic complexity heavily depends on the parameter Nbl, and, in particular, that it will increase when decreasing the decoded block sizes. As a consequence, the choice of Nbl must derive from a trade-off between memory and arithmetic complexity.

Numerical examples of memory requirements

In Table 2 we report the memory requirements (in number of bits to be stored) for the two code concatenations, using the following values for the parameters:

Parameter
Symbol
Value (case 1)
Value (case 2)
Value (case 3)
Value (case 4)

Information frame length

[image: image29.wmf]N

640
640
640
5120

Trellis steps for grouped decision

[image: image30.wmf]bl

N

100
100
640
100

Trellis steps for initialization

[image: image31.wmf]D

30
40
0
30

Number of states - inner encoder

[image: image32.wmf]si

N

2
2
2
2

Number of states – outer encoder

[image: image33.wmf]so

N

4
4
4
4

Input bits - inner encoder

[image: image34.wmf]i

k

2
2
2
2

Output bits - inner encoder

[image: image35.wmf]i

n

3
3
3
3

Termination steps - inner encoder

[image: image36.wmf]ti

n

1
1
1
1

Input bits - outer encoder

[image: image37.wmf]o

k

1
1
1
1

Output bits - outer encoder

[image: image38.wmf]o

n

2
2
2
2

Termination steps - outer encoder

[image: image39.wmf]to

n

2
2
2
2

Number of states of both encoders for PCCC

[image: image40.wmf]s

N

4
8
4
4

Termination steps for both encoders - PCCC

[image: image41.wmf]t

n

2
3
2
2

Input information bits

[image: image42.wmf]k

1
1
1
1

Output bits - upper encoder

[image: image43.wmf]1

n

2
2
2
2

Output bits – lower encoder

[image: image44.wmf]2

n

1
1
1
1

Quantization bits – soft demod.
 q
8
8
8
8

Quantization bits – LLRs
 qx
16
16
16
16

Table 2 : Memory requirements (case 1 ,2,3,4)

Input buffer
Iteration buffers
Beta recursion
Permut.
Total

PCCC
15,408
20,480
8,320
5,966
50,174

SCCC
15,432
41,088
8,320
13,259
78,099

Input buffer
Iteration buffers
Beta recursion
Permut.
Total

PCCC
15,432
20,480
17,920
5,966
59,798

Input buffer
Iteration buffers
Beta recursion
Permut.
Total

PCCC
15,408
20,480
40,960
5,966
82,814

SCCC
15,432
41,088
40,960
13,259
110,739

Input buffer
Iteration buffers
Beta recursion
Permut.
Total

PCCC
122,928
163,840
8,320
63,088
358,176

SCCC
122,952
327,808
8,320
136,476
595,556

Arithmetic complexity analysis

From an abstract point of view, which, by the way, seems to be the one having inspired the two alternatives between the 4-state turbo codes with 8 iterations and the 8–state turbo code with 4 iterations, we could define the arithmetic complexity as the number of visited trellis edges (or branches) per decoded information bit. Using this definition, the arithmetic complexity becomes strictly proportional to the product (number of states) ((number of iterations).

Then, one can multiply the number of visited edges times the number of arithmetic operations needed per visit, and obtain a measure in terms of number of additions, comparison etc. The final step of converting the number and kind of operations into a number of gates (for ASIC implementation) or into a DSP performance, depends on the chosen implementation technology (for ASIC) and from the DSP features.

The previous abstract measure, although traditionally used, as an example, for Viterbi algorithm, can lead to wrong conclusions in the case of turbo codes and SCCC, if it were to be used as a direct measure of hardware implementation complexity.

In fact, when the operational speed of the hardware implementation is significantly larger than the information data rate (as it is the case in UMTS, where the data rate is limited to 64 kbit/s; but the same result would hold true for higher data rate, up to a few hundred kbit/s for DSP implementation, a few Mbit/s using FPGA implementation, and hundreds of Mbit/s using ASIC implementation), the same hardware can perform all iterations sequentially, so that the arithmetic complexity becomes independent from the number of iterations.

As an example, using a single-chip board of the Texas Instrument fixed-point TMS320C6201 DSP to implement the optimum Log-APP sliding-window-block algorithm for a turbo code based on two 8-state constituent encoders and variable rates from ½ to 1/6, 10 iterations can be executed sequentially at an information data rate of 120 kbit/s. The data rate increases inversely proportional to the number of iterations and to the number of states of the encoders. For an implementation like this, the number of iterations is not a concern.

It has been observed previously (see UMTS Tdoc SMG2 UMTS-L1 by Samsung) that increasing the number of iterations increases the decoding delay. In UMTS case, this is not the case, since many (more than 10) iterations on the available block of data can be performed while receiving the next one, and, moreover, the most important source of decoding delay is the channel interleaver, which largely overcomes the delay due to the code block size.

In the following, we analyse in detail the arithmetic complexity of PCCC and SCCC

 To cope with the previous considerations, we measure the complexity in terms of arithmetic operations per decoded bit per iteration, as a function of the parameters previously defined. The kind of arithmetic operations required by the two algorithms are the following:

· Additions-Subtractions

· Moves

· Load

· Store

· Negations

Computational Complexity Requirements for PCCC
To decode a block of data we need to perform the following operations:

PCCC decoding

1. Get the LLRs coming from the soft-demodulator.

2. Perform
[image: image45.wmf]it

N

iterations of the decoding algorithm to update the values of the LLRs of the information bits.

3. Output the N decoded bits using the last available update of their LLRs.

Let’s look in more detail the operation involved in this procedure

One Iteration

One iteration requires the following operations:

1.
[image: image46.wmf](

)

D

N

N

D

-

n

bl

bl

t

+

÷

ø

ö

ç

è

æ

+

k

N

 backward recursions of the first decoder (b1).

2.
[image: image47.wmf]k

N

 forward recursions and input-LLRs updating for the first decoder (a1).

3.
[image: image48.wmf](

)

D

N

N

D

-

n

bl

bl

t

+

÷

ø

ö

ç

è

æ

+

k

N

 backward recursions of second decoder (b2).

4.
[image: image49.wmf]N

k

 forward recursions and input-LLRs updating for the second decoder (a2).

Backward recursion

The backward recursions for both decoders (b1 and b2) should execute the following steps:

1. Load the LLRs of the k input and the
[image: image50.wmf]2

,

1

=

j

n

j

 output bits.

2. Compute the
[image: image51.wmf]s

k

N

2

 branch metrics for the trellis section. This operation requires
[image: image52.wmf]k

n

j

n

j

+

-

2

 sums.

3. Load the
[image: image53.wmf]s

N

backward path metrics previously computed.

4. Sum path and branch metrics for
[image: image54.wmf]s

k

N

2

 edges.

5. Move the first incoming edge for
[image: image55.wmf]s

N

 states.

6. Execute the operator max* (explained in the following) for remaining
[image: image56.wmf](

)

1

2

-

k

s

N

 edges.

7. Store the new
[image: image57.wmf]s

N

 values of backward path metrics.

Forward recursion and Log-Likelihood Ratios updating (both decoders)

The forward recursion and input LLRs updating for first decoder (a1) should execute the following steps:

1. Load the LLRs of the k input and the
[image: image58.wmf]j

n

 output bits.

2. Compute the
[image: image59.wmf]s

k

N

2

 branch metrics for the trellis section. This operation requires
[image: image60.wmf]k

n

j

n

j

+

-

2

 sums.

3. Load the
[image: image61.wmf]s

N

forward path metrics previously computed.

4. Load the
[image: image62.wmf]s

N

backward path metrics previously computed.

5. Sum the forward path and branch metrics for
[image: image63.wmf]s

k

N

2

 edges.

6. Move the first incoming edge for
[image: image64.wmf]s

N

states.

7. Execute max* for remaining edges
[image: image65.wmf](

)

1

2

-

k

s

N

.

8. Store the new
[image: image66.wmf]s

N

values of forward path metrics.

9. Sum forward path and branch metrics with backward path metrics (
[image: image67.wmf]s

k

N

2

 sums).

10. Move the first incoming edge for
[image: image68.wmf]k

2

input label.

11. Execute max* for remaining edges
[image: image69.wmf](

)

1

2

-

s

k

N

.
[image: image70.wmf]
12. Extract the LLR for the
[image: image71.wmf]k

information bits:

[image: image72.wmf](

)

k

k

k

-

-

+

-

2

2

2

2

1

 max*

[image: image73.wmf]k

2

 subtraction

13. Store the new k values of LLRs.

Max* operator

The

The operation
[image: image74.wmf](

)

a

a

b

¬

max*

,

, which is defined as

[image: image75.wmf](

)

(

)

(

)

(

)

b

a

b

a

e

b

a

e

e

b

a

-

-

+

+

=

+

=

1

log

,

max

log

,

max

*

is performed by the following algorithm:

1.
[image: image76.wmf]b

a

d

-

=

2. If
[image: image77.wmf]0

<

d

 then
[image: image78.wmf]b

a

¬

3. If
[image: image79.wmf]0

<

d

 then
[image: image80.wmf]d

d

-

¬

4.
[image: image81.wmf])

,

(

d

m

sadd

address

=

5.
[image: image82.wmf](

)

address

Table

¬

D

6.
[image: image83.wmf]D

+

¬

a

a

which requires 1 subtraction, 1 comparison, 1 negation, 1 move, 1 load and 2 additions.

This operator, needed for the OLA algorithm, reduces to the following if the max* operation is approximated with a simple max operation as in MLA algorithm:

1. If
[image: image84.wmf]b

a

<

 then
[image: image85.wmf]b

a

¬

which requires only 1 comparison and 1 move.

The only difference between the OLA-SWB and MLA-SWB would be the replacement of the max* with the simpler max operation. Using the experience that we gained from a DSP implementation, we can roughly state that this would permit the doubling of the data rate for the MLA-SWB, but, of course, the comparison is very much dependent on the hardware solution (DSP, FPGA, or ASIC).

Interleaver-Deinterleaver

We will not take into consideration the operations involved in the interleaving process which can be summarized as follows:

For all bits

Interleaving

1. Read the permutation address

2. Write using the natural order

3. Read using the address

Deinterleaving

4. Read the permutation address

5. Write using the address

6. Read using the natural order

As a comment, we want to emphasise that these two simple algorithms allow to implement both interleaving and deinterleaving operations using a single address buffer, which store the address of the direct interleaver. Thus, we do not need to use “symmetric” permutation to save memory.

In Table 3, Table 4, Table 5 and Table 6 we summarize in a very general way the arithmetic complexity for PCCC

Table 3: Operations for the iterative decoder of PCCC

iterations

PCCC decoder

[image: image86.wmf]it

N

Table 4: Operations to perform one iteration of the decoding algorithm for PCCC

b1
f1
b2
f2

One iteration

[image: image87.wmf](

)

(

)

D

N

N

D

n

k

N

bl

bl

t

+

-

+

/

[image: image88.wmf]k

N

[image: image89.wmf](

)

(

)

D

N

N

D

n

k

N

bl

bl

t

+

-

+

/

[image: image90.wmf]k

N

Table 5: Operations for the backward and forward recursions for PCCC

Add-Sub
move
load
store
max*

Backward 1 (b1)

[image: image91.wmf]k

n

N

n

s

k

+

-

+

1

1

2

2

[image: image92.wmf]s

N

[image: image93.wmf]s

N

n

k

+

+

1

[image: image94.wmf]s

N

[image: image95.wmf](

)

1

2

-

k

s

N

Forward 1 (f1)

[image: image96.wmf]1

1

2

3

2

2

n

k

N

i

n

k

s

-

+

+

[image: image97.wmf]k

s

N

2

+

[image: image98.wmf]s

N

n

k

2

1

+

+

[image: image99.wmf]k

N

s

+

[image: image100.wmf](

)

(

)

(

)

k

N

N

k

k

s

k

k

s

-

-

+

+

-

+

-

-

2

2

2

2

1

2

1

2

1

Backward 2 (b2)

[image: image101.wmf]k

n

N

n

s

k

+

-

+

2

2

2

2

[image: image102.wmf]s

N

[image: image103.wmf]s

N

n

k

+

+

2

[image: image104.wmf]s

N

[image: image105.wmf](

)

1

2

-

k

s

N

forward 2 (f2)

[image: image106.wmf]2

2

2

3

2

2

n

k

N

n

k

s

-

+

+

[image: image107.wmf]k

s

N

2

+

[image: image108.wmf]s

N

n

k

2

2

+

+

[image: image109.wmf]k

N

s

+

[image: image110.wmf](

)

(

)

(

)

k

N

N

k

k

s

k

k

s

-

-

+

+

-

+

-

-

2

2

2

2

1

2

1

2

1

Table 6: Operations for the max*

Add-Sub
compare
negate
move
load
store

max*
3
1
1
1
1

Complexity Requirements for SCCC

To decode a block of data we need to perform the following operations:

SCCC decoding

1. Get the LLRs coming from the soft demodulator.

2. Perform
[image: image111.wmf]it

N

iterations of the decoding algorithm to update the values of the LLRs for the output bit of the outer encoder and the input bit of the inner encoder.

3. Output the N decoded bits which corresponds to the input bit of the outer encoder .

Let’s look in more detail the operation involved in this procedure

One Iteration

Each iteration requires the following operations:

1.
[image: image112.wmf](

)

D

N

N

D

-

n

k

n

n

bl

bl

ti

i

o

to

+

÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

+

o

k

N

 backward recursions of the inner decoder (bI).

2.
[image: image113.wmf]i

o

to

k

n

n

÷

÷

ø

ö

ç

ç

è

æ

+

o

k

N

 forward recursions and input LLRs updating for the inner decoder (aI).

3.
[image: image114.wmf](

)

D

N

N

D

-

n

bl

bl

to

+

÷

÷

ø

ö

ç

ç

è

æ

+

o

k

N

 backward recursions of outer decoder (bO).

4.
[image: image115.wmf]to

n

+

o

k

N

 forward recursions and output LLRs updating for the outer decoder (aO).

Backward recursion, Forward recursion and Log-Likelihood Ratios updating (Inner decoder)

The computational complexity is equal to that of OLA-SWB for the PCCC with the following substitutions:

[image: image116.wmf]si

s

i

j

i

N

N

n

n

k

k

=

=

=

.

Backward recursion (Outer decoder)

The backward recursions for the outer decoder should execute the following steps:

1. Load the LLRs
[image: image117.wmf]o

n

 output bits.

2. Compute the
[image: image118.wmf]so

k

N

o

2

 branch metrics for the trellis section. This operation requires
[image: image119.wmf]o

n

n

o

-

2

 sums.

3. Load the
[image: image120.wmf]s

N

backward path metrics previously computed.

4. Sum path and branch metrics for
[image: image121.wmf]so

k

N

o

2

 edges.

5. Move the first incoming edge for
[image: image122.wmf]so

N

 states.

6. Execute max* for remaining
[image: image123.wmf](

)

1

2

-

o

k

so

N

edges.

7. Store the new
[image: image124.wmf]so

N

 values of backward path metrics.

Forward recursion and Log-Likelihood Ratios updating (Outer decoder)

The forward recursion and input LLRs updating for outer decoder (aO) should execute the following steps:

1. Load the LLRs of the
[image: image125.wmf]o

n

 output bits.

2. Compute the
[image: image126.wmf]so

k

N

o

2

 branch metrics for the trellis section.
This operation requires
[image: image127.wmf]o

n

n

o

-

2

 sums.

3. Load the
[image: image128.wmf]so

N

forward path metrics previously computed.

4. Load the
[image: image129.wmf]so

N

backward path metrics previously computed.

5. Sum the forward path and branch metrics for
[image: image130.wmf]so

k

N

o

2

 edges.

6. Move the first incoming edge for
[image: image131.wmf]so

N

states.

7. Execute max* for remaining edges
[image: image132.wmf](

)

1

2

-

o

k

so

N

.

8. Store the new
[image: image133.wmf]so

N

values of forward path metrics.

9. Sum forward path and branch metrics with backward path metrics (
[image: image134.wmf]so

k

N

o

2

 sums).

10. Move the metric of the first incoming edge for all
[image: image135.wmf]O

n

2

 output labels.

11. Execute max* for remaining edges
[image: image136.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

1

2

2

2

o

O

n

so

ko

n

N

.

12. Extract the LLR for the
[image: image137.wmf]o

n

coded bits:

[image: image138.wmf](

)

0

1

2

2

2

2

n

o

o

n

n

-

-

+

-

 max*

[image: image139.wmf]o

n

2

 subtractions

13. Store the new
[image: image140.wmf]o

n

 values of LLRs.

In Table 7, Table 8 and Table 9 we summarize in a very general way the arithmetic complexity for SCCC (the table with the max* complexity has been omitted since it coincides with Table 6.

Table 7: Operations for the iterative decoder of SCCC

iterations

SCCC decoder

[image: image141.wmf]it

N

Table 8: Operations for one iteration of the decoding algorithm for SCCC

bI
fI
bO
fO

One iteration

[image: image142.wmf](

)

D

N

N

D

-

n

k

n

n

bl

bl

ti

i

o

to

+

÷

÷

ø

ö

ç

ç

è

æ

+

÷

÷

ø

ö

ç

ç

è

æ

+

o

k

N

[image: image143.wmf]i

o

to

k

n

n

÷

÷

ø

ö

ç

ç

è

æ

+

o

k

N

[image: image144.wmf](

)

D

N

N

D

-

n

bl

bl

to

+

÷

÷

ø

ö

ç

ç

è

æ

+

o

k

N

[image: image145.wmf]to

n

+

o

k

N

Table 9: Operations for the backward and forward recursions for SCCC

Add-Sub
move
load
store
max*

Backward 1 (bI)

[image: image146.wmf]i

i

n

si

k

k

n

N

i

i

+

-

+

2

2

[image: image147.wmf]si

N

[image: image148.wmf]si

i

i

N

n

k

+

+

[image: image149.wmf]si

N

[image: image150.wmf](

)

1

2

-

i

k

si

N

Forward 1 (fI)

[image: image151.wmf]i

n

i

k

si

n

k

N

i

i

-

+

+

2

3

2

2

[image: image152.wmf]i

k

si

N

2

+

[image: image153.wmf]si

i

i

N

n

k

2

+

+

[image: image154.wmf]i

si

k

N

+

[image: image155.wmf](

)

(

)

(

)

i

k

k

si

k

k

si

k

N

N

i

i

i

i

-

-

+

+

-

+

-

-

2

2

2

2

1

2

1

2

1

Backward 2 (bO)

[image: image156.wmf]o

n

so

k

n

N

o

o

-

+

2

2

[image: image157.wmf]so

N

[image: image158.wmf]so

o

N

n

+

[image: image159.wmf]so

N

[image: image160.wmf](

)

1

2

-

o

k

so

N

Forward 2 (fO)

[image: image161.wmf]o

n

k

so

n

N

o

o

+

+

+

2

2

2

[image: image162.wmf]k

so

N

2

+

[image: image163.wmf]so

o

o

N

n

k

2

+

+

[image: image164.wmf]o

so

n

N

+

[image: image165.wmf](

)

(

)

(

)

o

n

n

so

n

k

n

k

so

n

N

N

o

o

o

o

o

o

-

-

+

-

+

-

-

-

2

2

2

2

1

2

2

1

2

1

Numerical examples of arithmetic computational complexity

In Table 10 -
Table 17
 we report the arithmetic complexity (expressed in number of elementary operations) for the two code concatenations, using the following values for the parameters:

Parameter
Symbol
Value (case 1)
Value (case 2)
Value (case 3)
Value (case 4)

Information frame length

[image: image166.wmf]N

640
640
640
5120

Trellis steps for grouped decision

[image: image167.wmf]bl

N

100
100
640
100

Trellis steps for initialization

[image: image168.wmf]D

30
40
0
30

Number of states - inner encoder

[image: image169.wmf]si

N

2
2
2
2

Number of states – outer encoder

[image: image170.wmf]so

N

4
4
4
4

Input bits - inner encoder

[image: image171.wmf]i

k

2
2
2
2

Output bits - inner encoder

[image: image172.wmf]i

n

3
3
3
3

Termination steps - inner encoder

[image: image173.wmf]ti

n

1
1
1
1

Input bits - outer encoder

[image: image174.wmf]o

k

1
1
1
1

Output bits - outer encoder

[image: image175.wmf]o

n

2
2
2
2

Termination steps - outer encoder

[image: image176.wmf]to

n

2
2
2
2

Number of states of both encoders for PCCC

[image: image177.wmf]s

N

4
8
4
4

Termination steps for both encoders - PCCC

[image: image178.wmf]t

n

2
3
2
2

Input information bits

[image: image179.wmf]k

1
1
1
1

Output bits - upper encoder

[image: image180.wmf]1

n

2
2
2
2

Output bits – lower encoder

[image: image181.wmf]2

n

1
1
1
1

Quantization bits – soft demod.
 q
8
8
8
8

Quantization bits – LLRs
 qx
16
16
16
16

Table 10: Arithmetic complexity for PCCC (case 1) with max* operator (OLA-SWB)

Add-sub
compare
negate
move
load
store
max*
b1
f1
b2
f2
iter.

max*
3
1
1
1
1

backward upper (b1)
11

4
7
4
4

Total b1
23
4
4
8
11
4

forward upper (f1)
21

6
11
5
10

Total f1
51
10
10
16
21
5

backward lower (b2)
10

4
6
4
4

Total b2
22
4
4
8
10
4

forward lower (f2)
20

6
10
5
10

Total f2
50
10
10
16
20
5

One iteration

796
640
796
796

Total one iteration
108,222
20,721
20,721
35,699
46,060
13,543

PCCC decoder

1

Total arithmetic complexity per decoded bit
169
32
32
56
72
21

Table 11: Arithmetic complexity for SCCC (case 1) with max* operator (OLA-SWB)

Add-sub
compare
negate
move
load
store
max*
b I
f I
b O
f O
iter.

max*
3
1
1
1
1

backward I (bI)
19

2
7
2
6

Total bI
37
6
6
8
13
2

forward I (fI)
27

4
9
4
14

Total fI
69
14
14
18
23
4

backward O (bO)
10

4
6
4
4

Total bO
22
4
4
8
10
4

forward O (fO)
22

6
11
6
12

Total fO
58
12
12
18
23
6

One iteration

797
642
796
796

Total one iteration
137,431
26,499
26,499
38,617
51,381
12,118

SCCC decoder

1

Total arithmetic complexity per decoded bit
215
41
41
60
80
19

Table 12: Arithmetic complexity for PCCC (case 2) with max operator (MLA-SWB)

add-sub
compare
negate
move
load
store
max
b1
f1
b2
f2
iter.

max

1

1

backward upper (b1)
19

8
11
8
8

Total b1
19
8
0
16
11
8

forward upper (f1)
37

10
19
9
22

Total f1
37
22
0
32
19
9

backward lower (b2)
18

8
10
8
8

Total b2
18
8
0
16
10
8

forward lower (f2)
36

10
18
9
22

Total f2
36
22
0
32
18
9

One iteration

844
640
844
843

Total one iteration
85,256
46,129
0
74,464
45,059
26,852

PCCC decoder

1

Total arithmetic complexity per decoded bit
133
72
0
116
70
42

Table 13: Arithmetic complexity for PCCC (case 2) with max* operator (OLA-SWB)

add-sub
compare
negate
move
load
store
max*
b1
f1
b2
f2
iter.

max*
3
1
1
1
1

backward upper (b1)
19

8
11
8
8

Total b1
43
8
8
16
19
8

forward upper (f1)
37

10
19
9
22

Total f1
103
22
22
32
41
9

backward lower (b2)
18

8
10
8
8

Total b2
42
8
8
16
18
8

forward lower (f2)
36

10
18
9
22

Total f2
102
22
22
32
40
9

One iteration

844
640
844
843

Total one iteration
223,643
46,129
46,129
74,464
91,187
26,852

PCCC decoder

1

Total arithmetic complexity per decoded bit
349
72
72
116
142
42

Table 14: Arithmetic complexity for SCCC (case 3) with max* operator (OLA-one shot)

add-sub
compare
negate
move
load
store
max*
b I
f I
b O
f O
iter.

max*
3
1
1
1
1

backward I (bI)
19

2
7
2
6

Total bI
37
6
6
8
13
2

forward I (fI)
27

4
9
4
14

Total fI
69
14
14
18
23
4

backward O (bO)
10

4
6
4
4

Total bO
22
4
4
8
10
4

forward O (fO)
22

6
11
6
12

Total fO
58
12
12
18
23
6

One iteration

643
642
642
642

Total one iteration
119,449
23,118
23,118
33,392
44,311
10,274

SCCC decoder

1

Total arithmetic complexity per decoded bit
187
36
36
52
69
16

Table 15: Arithmetic complexity for PCCC (case 3) with max* operator (OLA, one shot)

add-sub
compare
negate
move
load
store
max*
b1
f1
b2
f2
iter.

Max*
3
1
1
1
1

backward upper (b1)
11

4
7
4
4

Total b1
23
4
4
8
11
4

forward upper (f1)
21

6
11
5
10

Total f1
51
10
10
16
21
5

backward lower (b2)
10

4
6
4
4

Total b2
22
4
4
8
10
4

forward lower (f2)
20

6
10
5
10

Total f2
50
10
10
16
20
5

One iteration

642
640
642
642

Total one iteration
93,630
17,956
17,956
30,784
39,762
11,546

PCCC decoder

1

Total arithmetic complexity per decoded bit
146
28
28
48
62
18

Table 16: Arithmetic complexity for SCCC (case 4) with max* operator (OLA-SWB)

add-sub
compare
negate
move
load
store
max*
b I
f I
b O
f O
iter.

max*
3
1
1
1
1

backward I (bI)
19

2
7
2
6

Total bI
37
6
6
8
13
2

forward I (fI)
27

4
9
4
14

Total fI
69
14
14
18
23
4

backward O (bO)
10

4
6
4
4

Total bO
22
4
4
8
10
4

forward O (fO)
22

6
11
6
12

Total fO
58
12
12
18
23
6

One iteration

6,621
5,122
6,620
6,620

Total one iteration
1,127,959
217,347
217,347
317,273
422,325
99,926

SCCC decoder

1

Total arithmetic complexity per decoded bit
220
42
42
62
82
20

Table 17: Arithmetic complexity for PCCC (case 4) with max* operator (OLA-SWB)

add-sub
compare
negate
move
load
store
max*
b1
f1
b2
f2
iter.

max*
3
1
1
1
1

backward upper (b1)
11

4
7
4
4

Total b1
23
4
4
8
11
4

forward upper (f1)
21

6
11
5
10

Total f1
51
10
10
16
21
5

backward lower (b2)
10

4
6
4
4

Total b2
22
4
4
8
10
4

forward lower (f2)
20

6
10
5
10

Total f2
50
10
10
16
20
5

One iteration

6,620
5,120
6,620
6,620

Total one iteration
889,982
170,353
170,353
293,747
378,924
111,655

PCCC decoder

1

Total arithmetic complexity per decoded bit
174
33
33
57
74
22

Memory and Arithmetic complexities

As already pointed out in Nortel contribution to UMTS discussion (Tdoc 585/98), the evaluation of the arithmetic complexity is highly dependent on the chosen implementation. As an example, most of the recent DSPs offer several parallel arithmetic units that increase the processing power. Also, for an ASIC implementation, there are several choices on the architecture (like its degree of parallelism) that influence the true complexity.

In terms of memory requirements, we have seen that they become less critical for sliding window algorithms with a careful choice of the window and decoding block sizes.

In addition to the memory requirement, the choice between the one-shot and the sliding-window also influences the maximum achievable decoding speed. This is particularly true for DSPs, in which the access to the off-chip memory is much more time consuming than the access to the internal (on-chip) memory. As a consequence, the implementation should privilege solutions aiming at running the decoding algorithm on internal program memory accessing on-chip memory data. This fact has been crucial in optimizing the decoding speed on the TMS320C6201.

Conclusions

In conclusion of our complexity analysis, we can state the following facts:

· Our analysis permits an evaluation of the implementation complexity very general, coping with both SCCC and turbo codes for any rate , interleaver length, any constituent encoders, and two different decoding algorithms.

· The measure of complexity has been obtained in terms of bit memory requirements and elementary operations per decoded bit. It is therefore a measure that is independent of the particular implementation (DSP, FPGA, ASIC), and can then be used for all of them. It is intended that a hyerarchy between different concatenations and decoding algorithm may be influenced by the chosen implementation.

· The MLA algorithm requires almost the same memory than the OLA algorithm (the difference being only a small look-up table), but is significantly less complex from the number of operations point of view (especially for a DSP implementation). The difference, however, highly depends on the chosen implementation. The choice between the two algorithms must also take into account the fact that the MLA looses 0.4-0.6 dB in signal-to-noise ratio.

· The SWB versions of the two algorithms, when compared to the one-shot versions, reduce considerably the memory requirements, and permit to make the memory requirements of the backward recursion independent from the block size. It is therefore a mandatory choice for large block sizes, like 5120. This choice slightly increases the arithmetic complexity, but this increase can be kept very low by a careful choice of the window parameters.

· SCCC with 4-state outer encoder and 2-state inner encoder presents a memory requirement larger by a factor of 3/2 with respect to the 4+4-state PCCC, with a comparable arithmetic complexity. It seems thus a very good compromise in terms of performance/complexity trade-off, since it avoids the error floor phenomenon and takes advantage of an increased number of iterations, which can be performed at no implementation expenses.

· Parallel implementations (like the one suggested in Tdoc SMG2 UMTS-L1 by Samsung), using one processor per trellis state, does not seem necessary, as a single processor can perform sequentially all the operations required for one iteration, and then all iterations within the time required to receive the next block. This is due to the large difference between the data rate and the hardware speed, and holds true for DSP, FPGA and ASIC implementations.

References

[1] Tdoc SMG2 UMTS-L1 655/98, by Lucent Technologies

[2] S. Benedetto, D. Divsalar, G. Montorsi, F. Pollara, “Soft-input soft-output modules for the construction and distributed iterative decoding of code networks”, European Transactions on Telecommunications, vol. 9, n. 2, March-April 1998.

� This is sometimes incorrectly called Log-MAP. The denomination is incorrect because the algorithm does not perform a maximum-a-posteriori decision, but, instead, it estimates the a-posteriori probabilities.

� This is sometimes incorrectly called Max-Log-MAP. See footnote 1 for the explanation.

� One could, at this point, object that what we really care about is energy consumption of the handset, rather that hardware complexity, and the energy consumption is still proportional to the number of iterations. However, if this is the concern, one can devise very simple techniques to stop the iterations, leading to a significant energy save. This solution, provided that the hardware speed is large enough to permit the largest foreseen number of iterations, does not require further buffering.

PAGE
20

_974902835.unknown

_974988142.unknown

_974988319.unknown

_975006040.unknown

_975006497.unknown

_975006684.unknown

_975007682.unknown

_975007755.unknown

_975007814.unknown

_975007832.unknown

_975007961.unknown

_975007823.unknown

_975007791.unknown

_975007745.unknown

_975007480.unknown

_975007672.unknown

_975006745.unknown

_975006522.unknown

_975006605.unknown

_975006513.unknown

_975006404.unknown

_975006442.unknown

_975006491.unknown

_975006416.unknown

_975006232.unknown

_975006262.unknown

_975006279.unknown

_975006225.unknown

_974988322.unknown

_975001908.unknown

_975002079.unknown

_975002259.unknown

_974988323.unknown

_974988320.unknown

_974988321.unknown

_974988318.unknown

_974988170.unknown

_974988213.unknown

_974988233.unknown

_974988316.unknown

_974988223.unknown

_974988182.unknown

_974988162.unknown

_974978254.unknown

_974985022.unknown

_974985867.unknown

_974988106.unknown

_974988118.unknown

_974988131.unknown

_974988099.unknown

_974985857.unknown

_974984788.unknown

_974984835.unknown

_974984762.unknown

_974904029.unknown

_974965479.unknown

_974978102.unknown

_974978156.unknown

_974978241.unknown

_974978144.unknown

_974965691.unknown

_974962774.unknown

_974962904.unknown

_974963769.unknown

_974964101.unknown

_974964182.unknown

_974963919.unknown

_974963016.unknown

_974963031.unknown

_974962928.unknown

_974962853.unknown

_974962864.unknown

_974962812.unknown

_974962038.unknown

_974962271.unknown

_974962278.unknown

_974962054.unknown

_974962229.unknown

_974904737.unknown

_974904843.unknown

_974904859.unknown

_974904939.unknown

_974904847.unknown

_974904836.unknown

_974904809.unknown

_974904061.unknown

_974902934.unknown

_974902966.unknown

_974902995.unknown

_974902958.unknown

_974902847.unknown

_974899668.unknown

_974899896.unknown

_974899948.unknown

_974901650.unknown

_974902806.unknown

_974902825.unknown

_974902709.unknown

_974902758.unknown

_974901678.unknown

_974901616.unknown

_974900044.unknown

_974899926.unknown

_974899933.unknown

_974899902.unknown

_974899685.unknown

_974899883.unknown

_974899674.unknown

_974898419.unknown

_974899591.unknown

_974899607.unknown

_974899426.unknown

_974899548.unknown

_974899567.unknown

_974899516.unknown

_974898705.unknown

_974898509.unknown

_974887625.unknown

_974888209.unknown

_974888235.unknown

_974888396.unknown

_974888565.unknown

_974898225.unknown

_974888420.unknown

_974888342.unknown

_974888218.unknown

_974887658.unknown

_974888199.unknown

_974888163.unknown

_974887649.unknown

_974887258.unknown

_974887597.unknown

_947945290.unknown

_947945312.unknown

