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Few topics in electrical engineering have demanded as much attention over the years as the 
phase-locked loop (PLL). The PLL is arguably one of the most important building blocks necessary for 
modern digital communications, whether in the RF radio portion of the hardware where it is used to 
synthesize pristine carrier signals, or in the baseband digital signal processing (DSP) where it is often
used for carrier- and time-recovery processing. The PLL topic is also intriguing because a thorough 
understanding of the concept embraces ingredients from many disciplines including RF design, digital 
design, continuous and discrete-time control systems, estimation theory and communication theory.

The PLL landscape is naturally divided into (i) low signal-to-noise ratio (SNR) applications like Costas 
carrier-recovery and time-recovery applications and (ii) high SNR applications like frequency 
synthesis. Each of these areas is further divided between (a) analog/RF continuous-time 
implementations versus (b) digital discrete-time implementations. The different manifestations of the 
PLL concept require careful attention to different usage, analysis, design and implementation 
considerations.

With so many good tutorials about PLLs available on the Internet and elsewhere today, a theoretically
unifying development will be presented in this article with the intention of providing a deepened 
understanding for this extremely pervasive concept. In Part 1 of this series we'll look at PLL basics as 
well as different perspectives on PLL theory. In Part 2, we'll continue our look into PLL theory and 
then provide some real-world PLL design examples.

PLL Basics
The best way to develop a sound understanding of the PLL is to review the fundamental theories 
upon which this concept is based. One of the factors contributing to the longevity of the PLL is that 
relatively simple implementations can still lead to nearly optimal solutions and performance.

"While recovering from an illness in 1665, Dutch astronomer and physicist Christiaan Huygens 
noticed something very odd. Two of the large pendulum clocks in his room were beating in unison, 
and would return to this synchronized pattern regardless of how they were started, stopped or 
otherwise disturbed.

An inventor who had patented the pendulum clock only eight years earlier, Huygens was 
understandably intrigued. He set out to investigate this phenomenon, and the records of his 
experiments were preserved in a letter to his father. Written in Latin, the letter provides what is 
believed to be the first recorded example of the synchronized oscillator, a physical phenomena that 
has become increasingly important to physicists and engineers in modern times." (See 
http://www.globaltechnoscan.com/20thSep-26thSep/out_of_time.htm

It should come as no surprise that modern researchers would later find that the behavior of such 
injection-locked oscillators can be closely modeled based upon PLL principles.6,7,8,9. Anyone who has 
tried to co-locate RF oscillators running at different but nearly the same frequency has experienced 
how incredibly sensitive this coupling phenomenon is!

In 1840, Alexander Bain proposed a fax machine that used synchronized pendulums to scan an 
image at the transmitting end and send electrical impulses to a matching pendulum at the receiving 
end to reconstruct the image. The device, however, was never developed.
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"The phase-lock concept as we know it today was originally described in a published work by de 
Bellescize in 19321 but did not fall into widespread use until the era of television where it was used to
synchronize horizontal and vertical video scans. One of the earliest patents showing the use of a PLL 
with a feedback divider for frequency synthesis appeared in 1970.2 The PLL concept is now used 
almost universally in many products ranging from citizens band radio to deep-space coherent 
receivers."1

A PLL consists of three basic components that appear in one form or another:4,5

Phase error metric or detector1.
Frequency-controllable oscillator2.
Loop filter3.

Loop "type" refers to the number of ideal poles (or integrators) within the linear system. A 
voltage-controlled oscillator (VCO) is an ideal integrator of phase for example.

Loop "order" refers to the polynomial order of the describing characteristic equation for the linear 
system. Loop-order must always be greater than or equal to the loop-type.

Although the term "settling time" is frequently used in the literature, a specified settling time is 
meaningless unless the definition for settling is also provided. A properly rigorous statement would be
for example, "The settling time for the PLL is 1.5 ms to within +/-5 degrees of steady-state phase."

Continuous-Time Versus Discrete-Time Systems
PLL work was originally based upon continuous-time dynamics and engineers utilized the Laplace 
transform to mathematically describe linear PLL behavior. The world has however gone digital and 
with it, time has been discretized and dynamic quantities sampled. The connection between 
continuous-time and discrete-time systems can be easily bridged by making use of the Poisson Sum 
formula.3. This formula relates the continuous-time function h(t) and its Fourier transform H(f) to the
discretized world as:

where Ts is the time interval between samples. The left-hand side of Equation 1 is by definition the 
z-transform of h(t) weighted by the quantity Ts.

It is insightful to look at this statement for the classic type-2 third-order PLL shown in Figure 1 for 
which the open-loop gain is given by:
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Figure 1: Diagram of a simple charge-pump PLL.

where KV is the VCO tuning sensitivity (rad/sec/V), Kd is the phase detector gain (A/rad.), N is the
feedback divider ratio, and τp and τ2 are the time constants associated with the lead-lag loop filter. 
In this form, the loop natural frequency and loop damping factor are given respectively by Equations 
3 and 4.

The discrete-equivalent z-transform for GOL(s) can be computed as:

As developed at length in Chapters 4 and 5 of Reference 3, sampling control system factors adversely
affect PLL stability, settling time, and phase noise performance as the closed-loop bandwidth is 
permitted to exceed approximately 1/10th of the phase comparison frequency. Sampling effects on 
the open-loop and closed-loop transfer functions can be assessed by either going to the trouble to 
first compute the z-transform of the open-loop gain function as in Equation 7, or the Poisson Sum 
formula can be used to compute the closed-loop transfer function much more conveniently as:

Only a very few of the aliased GOL(s) gain terms need to be retained in the denominator in order to 
very accurately capture the sampling effects of interest.

The open-loop gain functions with and without the inclusion of sampling effects are shown in Figure 
2 assuming a sampling rate of 100 kHz, a natural frequency of 5 kHz and damping factor of 0.90. 
The closed-loop response for this same system is shown in Figure 3 using Equation 8.
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Figure 2: Closed-loop gain showing continuous and sampled gain forms.

Figure 3: Closed-loop behavior for the case shown in Figure 2.

If the PLL natural frequency is increased to 12.5 kHz (representing 1/8th of the sampling rate), 
stability problems become readily apparent as an excessive amount of gain-peaking that appears as 
shown in Figure 4 and the almost nonexistent gain-margin as shown in Figure 5.
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Figure 4: Open-loop gain for increased PLL bandwidth case.

Figure 5: Closed-loop behavior for increased PLL bandwidth case. 

PLL Theory Perspectives
PLL theory of operation can be looked at from several different perspectives. As we have just seen in 
the previous section, time-continuous and sampled system analysis of PLLs used for frequency 
synthesis produce almost identical results unless the closed-loop bandwidth becomes an appreciable 
fraction of the phase comparison frequency being used.

In a similar fashion, different analysis must be used to study PLL operation under low signal-to-noise 
ratio (SNR) cases (e.g., customarily found in receiver applications) as compared to high SNR cases 
(e.g., like those encountered in frequency synthesizer usage). Several different perspectives that all 
help expand the phase-locked loop concept are discussed in the material that follows.

Control Theory Perspective (High SNR)
The control theory perspective of PLLs is normally the setting with which electrical engineers are 
dominantly familiar. Control theory concepts were used earlier in this article. Continuing in this vein, 
the classical type-2 second-order PLL that will be used for these discussions is shown in Figure 6. In 
our first view of this PLL in the strictly continuous-time domain, the phase detector is assumed to be 
linear (i.e., no sample-and-hold present).
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Figure 6: Classical type-2 second-order PLL with sample-and-hold phase detector.

Several first-order approximations are helpful to keep in mind when dealing with this classical PLL 
system based upon simple Bode diagramming techniques. The open-loop gain diagram of interest is 
Figure 7 whereas Figure 8 pertains to the closed-loop characteristics. In both figures, the unity-gain
radian frequency ωu is given by Equation 11.

Figure 7: Open-loop gain approximations for classic type-2 PLL.
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Figure 8: Closed-loop approximations for classic type-2 PLL.

As noted elsewhere, the behavior of real-world sampled systems matches the continuous-time 
behavior very closely if the system bandwidths are small relative to the sampling rate. Therefore, it is
very convenient to use the results from continuous-time theory to approximate useful quantities for 
both types of systems. A number of these helpful results for the continuous-time case are provided in
Table 1.

Table 1 Helpful Formula for Classic Type-2 PLL

Click Here for Table 1

In moving beyond the strictly continuous-time domain so that we can include digital dividers and 
phase detectors, we now include the zero-order sample-and-hold in the open-loop gain formula as 
given by Equation 12. In this formulation, Kd now has dimensions of V/rad. and Ts is the time 
between sampling instants. The closed-loop natural frequency and damping factor are still given by 
Equations 9 and 10 respectively.

In the case where the continuous-time open-loop gain is given by Equation 12, full sampling effects 
can be included by computing the equivalent z-transform for this open-loop gain function which is:

The system gain-margin GM based upon Equation 13 can be shown to be:

But the gain margin is only defined provided that ωnT<>sub>s < 4ζ. This same constraint applies for
the system phase margin, which is given Reference 3. Since the z-domain shown in Equation 13
includes sampling effects whereas the Laplace s-domain in shown in Equation 12 does not, the
gain-margin predicted using the Laplace transform GOL(s) will always be more optimistic than actual 
as shown in Figure 9.
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Figure 9: Gain margin for classic type-2 PLL with sample-and-hold ζ=0.707.

Phase-Locked Loops for Low SNR Applications
Low SNR applications are frequently observed at the receiving end of the system. The low SNR case 
can be cast in its most simple form as a simple sinusoidal signal immersed in additive white Gaussian
noise (AWGN) and mathematically represented as:

where s(t)= A cos(ωot + θ) and the frequency and phase are considered constant. In the phase-lock
condition, we can further assume that the frequency ωo is known whereas the system is attempting
to track the phase θ, which is assumed to be quasi-static relative to the bandwidth of the PLL
tracking system. It can be shown that the probability density function for the θ estimate can be
written as:

where γ is the receive SNR. The cumulative pdf using Equation can be numerically computed to
create the traditional "S-curve" for the ideal phase error metric. Example probability density functions
and their associated S-curves are shown in Figures 10 and 11.
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Figure 10: Phase error PDF.

Figure 11: Cumulative phase error PDFs (S-curves).

Fokker-Planck techniques can be used to solve the ensuing closed-loop tracking performance 
question for type-1 PLLs.10,11,12. The classic result that follows is the well-known Tikhonov 
probability density function for the closed-loop phase error given as:

where ρ is the SNR within the closed-loop bandwidth and Io() is the modified Bessel function of order 
zero. A more insightful exploration into the tracking performance of the type-1 PLL can be made by 
using the S-curve results that were just presented along with a first-order Markov model for the
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system.

In the first-order Markov model for a type-1 PLL13,14, the phase error range (-π,+π] is quantized
across N states. Particularly nice closed-form results occur14 if the state transitions are limited to 
strictly nearest-neighbor transitions as shown in Figure 12. Since the use of N states divides the
total phase range of 2π into N equally-spaced phase intervals, the closed-loop bandwidth is inversely
proportional to N. The state-transition probabilities denoted by the pi and qi are directly obtained 
from the S-curve at the SNR of interest.

Figure 12: First-order Markov chain model for type-1 PLL.

The Markov steady-state probability equations can be formulated as:

in which the Sk denote the steady-state occupancy probabilities for each state with k=1...N. This set 
of equations can be solved as:

The mean tracking point and tracking error variance can be directly computed from the steady-state 
probabilities as:

The steady-state probabilities results are shown for two SNR cases with N=64 in Figure 13. The 
tracking error standard deviation for the SNR= -2dB case is 14.7 degrees rms whereas it is 9.9 
degrees rms for the SNR= +2dB case (Figure 14).
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Figure 13: Tracking error standard deviation (in degrees rms) and effective loop SNR (dB) versus 
input SNR (dB).

Figure 14: Steady-state probabilities).

Another important quantity related to low SNR PLL operation is the quantity known as "mean-time to 
cycle-slip". This can be directly computed from the transition probabilities in a similar fashion as 
described in References 13 and 14.

Minimum Variance Estimator
The design of a near-optimal PLL can be investigated by considering the phase-tracking problem as a 
minimum-variance estimation problem. Assume that we have a received signal that is represented
by:

in which n(t) represents complex Gaussian channel noise and s(t) represents a complex sinusoid as

If the received signal is discretized in time (tk = kTs), noise samples at tk are assumed to be 
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uncorrelated, and the estimates for the sinusoid's parameters are given by , the variance 
for the joint estimate is given by:

This can be expanded as:

Assuming that the PLL has already achieved frequency-lock, we will assume that  and there is 
no frequency error present. Minimizing the estimator variance with respect to each individual 
parameter separately results in the following partial derivatives:

where  is always a real quantity. The estimators that minimize the tracking error variance are then 
given as:

in which K is the total number of signal samples involved and zk= exp(jωTs). Although the estimator 

for  involves first knowing , no prerequisite knowledge of  is explicitly required in Equation 31 
in order to find the best phase estimate. The implementation structure suggested by Equation 31 for 
the minimum-variance phase estimator is shown in Figure 15.19

Figure 15: Minimum-variance estimator cast as a PLL.

Maximum-Likelihood Estimator
Another estimator form can be derived based upon maximizing probability or what is called
"likelihood" in estimation theory. In the case of a real sinusoid of unknown phase in real additive
Gaussian noise similar to the situation we just examined, we seek to pick an estimate for θ that
maximizes the probability:

where  and  represent the K-dimensional measurement and signal estimate, and R is the KxK 
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correlation matrix. In this real case being considered, sk = A cos(ωokTs+θ). We can equivalently seek
to maximize the log-likelihood function of θ which is given by:

Assuming that the noise samples have equal variances and are uncorrelated, R= σn2I, where I is the
KxK identity matrix. In order to maximize Equation 34 with respect to θ, a necessary condition is that
the derivative of Equation 34 with respect to θ be zero, or equivalently:

Simplifying this result further and discarding the double-frequency terms that results, the
maximum-likelihood estimate for θ is that value that satisfies the constraint:

The top-line indicates that double-frequency terms are to be filtered out and discarded. This result is 
equivalent to the minimum-variance estimator derived earlier in Equation 31.

Wrap Up
Diverse design perspectives can be utilized to improve and extend our basic understanding of the PLL
concept. Mathcad worksheets for most of the results presented in this paper can be found at : 
http://www.siliconrfsystems.com/design_notes.htm.

In Part 2 of this article, we will close out the theoretical discussions by looking at (i) the maximum a 
posteriori (MAP) estimator PLL form, (ii) the Cramer-Rao bound which provides helpful insights into 
achievable theoretical performance, and finally (iii) the PLL derived based upon Kalman filtering 
concepts. The balance of the article will look at several real-world applications using the PLL concept. 
Editor's Note: To view Part 2, click here.
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In Part 1 of this article, we looked at a number of phase-locked loop (PLL) concepts ranging from continuous and 
sampled control systems to estimation theory based perspectives. Now, in Part 2, we will continue are 
examination of the PLL concept in the estimation theory sense by looking at maximum a posteriori (MAP)-based 
PLLs and the fundamental performance limits described by the Cramer-Rao bound. Our theoretic involvement will
culminate with a Kalman filtering perspective for the PLL. The balance of this article will utilize the PLL concept in 
several real-world applications.

MAP-based Estimators
The MAP estimator form is used for the estimation of random parameters whereas the maximum-likelihood (ML) 
form is generally associated with the estimation of deterministic parameters. From Bayes Rule, we know that 
given an observation z that Equation 1 is true.

Equation 1 below can be re-written in the logarithmic form as shown in Equation 2 below.

This log probability may be maximized by setting the derivative with respect to θ to zero thereby creating the
necessary condition that is shown in Equation 3 below.

If the density p(θ) is not known, we are forced to ignore the second term in Equation 3, which leads naturally to
the maximum-likelihood form as shown in Equation 4 below.

Although the MAP and ML estimators are not the same in the strict sense, the MAP estimator takes on the form
of the maximum-likelihood (ML) estimator in the absence of sufficient prior knowledge of θ.

The similarities between the minimum mean-square error (MMSE), ML, and MAP estimators should not go 
unnoticed. In the Gaussian noise case, the observed signal is given by:

in which v(t) is the noise and θ is the nonrandom parameter of interest, it can be shown that the ML estimate for
θ is given by:

In the jointly Gaussian case where θ is assumed to be a random parameter having a variance of σθ2, use of 
Equation 3 leads to the result that:
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These two results illustrate how similar the ML and MAP estimates can appear. The Fundamental Theorem of 

Estimation Theory22 states that the estimator that minimizes the mean-square error is given by:

It can also be shown that the best linear unbiased estimator (BLUE) form takes on the form of the weighted 
least-squares estimator given that the proper sample weighting is applied.

In Part 1 of this article, we found that the ML estimator for the signal phase utilized a gradient error metric that 
sought to drive any quadrature (or orthogonal) signal components to zero. This is not unlike the Orthogonality 
Principle in estimation theory, which stipulates that any residual estimation error should be orthogonal (i.e., 
uncorrelated) with the observations as:

More information on the fundamentals of estimation theory can be found in References 20, 21, and 22.

Performance Limits From the Cramer-Rao Bound
In the case of unbiased estimators for non-random parameters, the Cramer-Rao Bound (CRB) provides a lower 
bound for the estimation error variance achievable. One of the most important aspects of the CRB and bounds 
like it is that the difficulty of a given design objective can be very quickly judged by comparing a given 
requirement with the appropriate bound. In other words, it can be embarrassing to find out after already 
expending a great deal of time and effort on a problem that the requirement runs contrary to the laws of physics.

In the single-parameter case, the CRB is usually presented in two different equivalent forms as:20,21,22

When multiple parameters are being estimated (e.g., amplitude, phase, frequency), the CRB takes the form of 
the Fisher Information Matrix. The interested reader should consult References 19, 20, 21, and 22 for additional 
information on this topic.

It is of interest to compare the MAP and PLL phase estimators in terms of some performance measures. In order 
to do this, we first obtain the variance of each estimator. As developed in Part 1, the steady-state first-order 
(and second-order) PLL phase estimator probability density is taken to be the Tikhonov probability density 
function that is given by:

where I0() is the zeroth-order modified Bessel function of the first kind and α is the SNR within the PLL. The

variance for the PLL estimator is given by:13

These results and the linear result in which σθ2 =α-1 are plotted for comparison purposes in Figure 1.
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Figure 1: Tracking variance for MAP and PLL phase estimators versus SNR.

Kalman Filtering
The PLL can be cast as an extended Kalman filter and hence it is an approximate solution for the optimal 

nonlinear filtering problem.9. The Kalman filter is a set of mathematical equations that provides an efficient 
recursive means to estimate the state x of a process, in a way that minimizes the mean of the squared error. The

filter is very powerful in several aspects: it supports estimation of past, present, and even future events.10

The Kalman filter addresses the general problem of trying to estimate the state x of a discrete-time controlled 
process that is governed by the linear stochastic difference equation of the form:

with measurements given by:

The A, B, and H matrices can be time-variable but are shown here as constant. The random wk and vk represent 
the process and measurement noise respectively, and they are assumed to be statistically independent with 
covariance matrices Q and R respectively. Vector uk is the input to the system.

The mean-squared filtered estimate of the system state at time k+1 is represented by , and it can be 
written in predictor-corrector form as shown in Figure 2.
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Figure 2: Organization of Kalman filter as a predictor-corrector sequence.10

The similarities of the Kalman filter with other time-stationary results are striking. In the case of the best linear 
unbiased estimate (BLUE), its recursive structure may be written in an almost identical form except that we have
no time prediction steps since we have access to no system state information for the BLUE. Its formulation is
shown in Figure 3.

Figure 3: Recursive equation formulation for BLUE.

The recursive Kalman equations lend themselves very easily to implementation within a second-order digital 
phase-locked loop (DPLL). This has been done before in References 11 and 12.

Although the Kalman filter requires current information about the noise covariance in its execution through the Q 
and R matrices, it is particularly adept at improving the tracking performance in situations which are not 
time-stationary. As the structure content of the signal being tracked increases, the Kalman filter can deliver
substantial performance gains over other methods that do not exploit state estimation.

PLL Applications
1. RF Frequency Synthesis Using Charge-Pump Based PLLs
The National Semiconductor line of Platinum frequency synthesizer devices revolutionized the world of frequency 
synthesis in the early 1990's by delivering unprecedented predictably-reliable phase noise performance in a 
highly-integrated low-cost device. These devices had a host of very nice features about them, but most notable 
was the low phase noise performance of the charge-pump phase detector along with the very low reference spur 
levels achievable. The excellent balance and leakage characteristics of the phase detector made it possible to 
implement a complete PLL with a very modest loop filter.

1. Classic Type-2 Charge-Pump Implementation
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The circuit schematic for the classic type-2 fourth-order PLL is shown here in Figure 4. The current noise sources 
associated with each resistor are shown shunted across each respective resistor, and the reference-related and 
voltage-controlled oscillator (VCO) self-noise make up the remainder of the major noise contributors.

Figure 4: Circuit Diagram for type-2 fourth-order PLL using charge-pump phase detector. 

The normal approach that is taken to analyze this kind of system is to solve the nodal equations for the 

appropriate transfer functions algebraically.4. A streamlined approach is taken here where the same nodal 
equations are used but the customary algebraic manipulations are avoided by using matrix methods. The matrix 
equation that describes the circuit in Figure 4 can be quickly written down in Laplace transform form as:

where Gi = (Ri)-1 and the Ij represent the Johnson current noise sources associated with each resistor. Analysis 
tools like Matlab and Mathcad can be used to numerically solve this equation for the transfer functions of interest 

and for closed-loop noise performance quantities. The noise current for the jth resistor is given as:

and all of the noise sources are assumed to be statistically independent.

The phase detector referenced phase noise floor for the National Semiconductor Platinum series devices is given
by:

where LFloor = -205/-210/-211/-218 dBc/Hz for the LMX2315/LMX2306/LMX2330/LMX2346 devices respectively.
This model or another can be used for the reference noise level represented in Equation 15 by θrn. Leeson's
model can be similarly used for the VCO self-noise term represented by θvn in Equation 15, recognizing that this 
noise contribution is frequency-dependent as given by:

in which F is noise factor, k is the Boltzmann's constant, To= 290 degrees Kelvin, P0 is the power extracted from 
the actual resonator in Watts, Fc is the VCO center frequency in Hz, and QL is the loaded resonator Q-factor. 
Additional terms are often added within the parenthesis to account for 1/f noise, etc., but these rarely survive 
the closed-loop action of the PLL and have consequently not been included here.

The transient response of the PLL to a step-change in phase or frequency can be similarly computed using
numerical techniques. The approach taken here is to substitute the Laplace transform of a step-frequency error

given by 2πΔ F/s2 in for θvn in Equation 15, and then compute the Fourier transform for θVCO at an 
equally-spaced grid of frequencies from which the inverse FFT provides the time-domain response. An example 
time-domain response is shown in Figure 5. The ensuing details for both of these example results have 

purposely been omitted for brevity whereas they can be found online.6
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Figure 6: Example time-domain response to step-frequency change using FFTs.

Several design procedures are available for designing "optimal" PLL loop filters. Whenever the word optimal is 
used however, designers should ask the question, "Optimal with respect to what criteria?"

Some communication systems are primarily concerned with frequency error whereas others are concerned with 
phase error. If the wrong criteria is adopted, the design can often result in being more difficult than necessary. It 
is therefore very attractive to have an interactive tool that permits a simultaneous examination of both the time 
as well as output spectrum domains.

Phase Noise Impact on Communication Systems
Phase noise manifests itself in primarily two undesired phenomenon when it comes to wireless communications 

and frequency synthesis. Close-in1 phase noise interferes with coherence in the receiver and in the case of QAM 
signal constellation, causes adjacent constellation points to be received more likely in error when channel noise is
present. (Amplitude noise at the output of a properly designed synthesizer should be 20 dB or more below the 
phase noise level, and is therefore rarely a consideration.)

In frequency-modulated systems, phase noise can be equivalently expressed as a residual FM noise and it 
similarly adds to confusion in the receiver as to which frequency was truly sent by the transmitter. Far-out phase
noise degrades channel selectivity, adjacent channel occupancy, and receiver third-order intercept point due to 
reciprocal mixing. Only a few of the most common digital communication waveforms will be considered here due 
to space limitations.

The close-in phase noise impairment to (uncoded) bit error rate performance is most often computed using the 
Tikhonov probability distribution function for the noise. For large signal-to-noise ratio (SNR) arguments, 
numerical evaluation of the zeroth-order Bessel function can become problematic and it is more convenient to 
closely approximate this density function as:

in which σθ2 is the variance of the phase noise process involved. This variance is normally calculated as:

where L(f) is the phase noise power spectral density of the local oscillators involved in rad2/Hz, FS is the symbol 
rate, and FL is a lower frequency limit normally given as 0.01 FS or thereabouts, depending upon the 
carrier-recovery baseband processing that may be present in the complete system. These definitions apply for a 
single-carrier system but need some additional enlargement in the case of multi-carrier systems like orthogonal 
frequency division multiplexing (OFDM). In the case of QAM-style digital modulations, the (uncoded) symbol 
error rate can then be computed as:
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Some results computed in this manner may be found in Reference 8. The conditional symbol-error-rate formulas 
for coherent binary phase-shift keying (BPSK) and quadrature PSK (QPSK) performance are respectively given
as:

The conditional symbol error rate relationships for other square-QAM signal constellations like 64-QAM can be 
found in Reference 7.

It should come as no surprise that BPSK shows little susceptibility to phase noise related performance loss as 
shown in Table 1 since it is essentially an amplitude-based modulation type. Performance degrades significantly 
as the signal constellation size increases, culminating in sub-one degree rms phase noise being desirable for 
64-QAM in order to avoid appreciable Eb/No loss.

Table 1: QAM Uncoded Symbol Error Rate with Phase Noise

Click here for table 1

In the case of carrier-recovery in which coherent demodulation is to be performed on QAM-type signals, the 
Costas loop has found wide-spread use as an unbiased low-variance practical solution. It can be shown that the 
Costas loops for BPSK and QPSK are equivalent to 2nd and 4th power non-linearities followed by a PLL. Block 
diagrams for the BPSK and QPSK Costas loops are shown in Figure 6 and Figure 7 respectively.

Figure 6: MAP-based Costas carrier recovery PLL for BPSK.14

Figure 7: MAP-based carrier recovery PLL for QPSK.15
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Symbol Timing Recovery
Symbol timing recovery is required in both wired as well as wireless systems and quite often employs PLL-like 
circuitry or algorithms. Timing errors in this process lead to (i) a loss associated with missing the correlation peak 
from the receive matched filter as well as (ii) additional inter-symbol interference (ISI) from time-adjacent data 
symbols. In order to properly design the time tracking loop, we must first know the conditional error probability 
associated with a static timing error so that it can be used in a manner very similar to that used in Equation 21.

In the example that we will consider, the transmit pulse shape is assumed to be a square-root raised-cosine
pulse having an excess bandwidth parameter α of 0.50. The filter bandwidth time symbol time duration quantity
for other filters used in this paper is referred to as BT. The Fourier transform for such a pulse is given by:

The receiver is assumed to use a continuous-time N=3 Butterworth filter as a close approximation for the ideal 
matched filter and its Fourier transform may be written as:

where ωc is the -3 dB corner frequency in rad/sec. In the absence of noise, the individual pulse shape observed 
at the output of Hrx( ) may be directly computed by multiplying Equations 23 and 24 together in the frequency 
domain and performing an inverse FFT.

In the case where Hrx has BT= 0.50, this pulse shape is shown in Figure 8. In the absence of any timing error, 
the desired signal sample occurs coincident with the peak of the pulse as shown in Figure 8. ISI is clearly present
as shown however, because sample values at time instants offset by +/-kTsym are not all zero (k= nonzero 
integer). For random data, these nonzero adjacent symbol samples create data-dependent noise at the receiver's
decision making hardware thereby reducing the signal eye-opening thereby degrading system performance.

Figure 8: Individual pulse shape at receive filter output. 

Insight into the ISI matter can be had by considering all possible sequences of four-symbol sequences possible
and the eye diagram that is observed at the receive filter output. Eye diagrams for the α= 0.50 and 0.40 cases
are shown in Figures 9 and 10 respectively. The ISI and eye-closure are substantially worse for the α= 0.40
case as shown.
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Figure 9: ISI pattern for 16 possible four-symbol sequences with excess bandwidth parameter = 0.50.

Figure 10: ISI pattern for 16 possible four-symbol sequences with excess bandwidth parameter = 0.40.

The symbol error rate for random +/-1 data can be mathematically computed by recognizing that the decision
statistic consists of three components: (1) the desired signal, (2) additive Gaussian noise, and (3) data
pattern-dependent ISI. Characteristic function methods may be used to combine the effects of the ISI and
Gaussian noise as described in Reference 16 leading to the symbol error rate expression with static timing error
τe being given as:

where r(t) is the noise-free single-pulse shape at the receive filter output, σ2 is the variance of the Gaussian
noise at the receive filter output, and C(ω) is the characteristic function of the ISI noise. This can be shown to be
given by:
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The variance quantity specified in Equation 26 can be found from the equivalent noise bandwidth of the receive 
filter as:

where No is the one-sided Gaussian white noise power spectral density.

The foregoing results were used to compute the effect of timing error on symbol error rate performance as a 
function of the receive filter product as shown in Figure 11. The optimal value for best performance is BT= 0.50 
which leads to a performance loss of only about 0.25 dB at an input Es/No value of 9.6 dB which is quite
remarkable.

Figure 11: Symbol error rate versus static timing error and filter BT product.

The curves shown in Figure 11 can indirectly provide the needed conditional error probability like that used in 
Equation 21 thereby allowing the complete impact of imperfect PLL time-tracking behavior to be assessed.

In the context of hardware-based symbol timing recovery, many different types of timing error metrics are 
available, but one stands out in particular for very high-speed data applications in which most other detectors fall

prey to meta-stability problems. This detector type was first patented by Hogge18 and is shown here in Figure 
12. This detector is rather uniquely equipped for extremely high-speed data applications and in this figure, is 
shown being used within a type-2 third-order PLL structure.
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Figure 12: Hogge clock-recovery circuit within PLL structure.

Wrap Up
This two-part article has covered a wide range of PLL-related topics, but nonetheless space limitations precluded 
even mentioning other PLL-workhorses like Costas loops, joint timing and phase recovery PLLs, etc. If these 
articles succeeded in illustrating the versatile and pervasive aspects of the PLL concept, make a point in 
becoming more studious in PLLs. You will be glad that you did. Editor's note: To view Part 1, click here.
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